skip to main content


Search for: All records

Creators/Authors contains: "Grant, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrochemical‐based memristors are highly attractive that are capable of nonvolatile analog tuning, long‐term state stability, low power consumption, device scalability, and fast switching speeds. Through the combination of film deposition techniques, i.e., vapor phase polymerization and screen printing, fabrication of a poly(4‐(6‐hexyl)‐4H‐dithieno[3,2‐b:2′,3′‐d]pyrrole) (p6DTP)‐based synaptic‐emulating three‐terminal memristor is designed. Through voltage‐driven pulse programming, and square waves with an amplitude of 100 mV and duration of 100 msec, the device exhibits a power consumption of 1 pJmm2per synaptic event. By analyzing the fundamental operational trends of the p6DTP‐based device, simple and advanced integrated applications can be demonstrated along with synaptic‐like responses. This effort is the first presentation of the vapor phase polymerization technique for any dithienopyrrole‐based monomers, along with the physical implementation of any memristive system as an advanced logical circuit, demonstrated here as a cascaded combinational logic gate.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available July 25, 2024
  3. A new N-alkynylated dithieno[3,2- b :2′,3′- d ]pyrrole (DTP) monomer was synthesized using a Buchwald–Hartwig amination of 3,3′-dibromo-2,2′-bithiophene with pent-4-yn-1-amine. The obtained monomer was investigated for the possibility of a pre-polymerization modification via Huisgen 1,3-dipolar cycloaddition (“click”) reaction with azide-containing organic compounds. The synthesized N-alkynylated DTP monomer is soluble in a number of organic solvents and reacts with organic azides via “click” reactions in mild conditions, achieving high yields. The N-alkynylated DTP monomer and its “click”-modified derivative can be electropolymerized to form polymeric films. Herein, the synthesis and characterization of a “click” modified DTP monomer, its pre-modified derivative, and their corresponding polymers are described. The developed method is a facile route to synthesize a new generation of various N-functionalized DTP homopolymers. 
    more » « less
  4. null (Ed.)
    As the most likely prospect for the construction of neuromorphic networks, the emulation of synaptic responses with memristors has attracted attention in both the microelectronic industries and the academic environment. To that end, a newly synthesized hybrid conjugated polymer with pendant carbazole rings, that is, poly(4-(6-(9 H -carbazol-9-yl)hexyl)-4 H -dithieno[3,2- b :2′,3′- d ]pyrrole) (pC6DTP), was employed in the fabrication of a two-terminal memristor with a Al/pC6DTP/ITO configuration where the polymer was electrochemically doped. Signature biological synaptic responses to voltage spikes were demonstrated, such as potentiation & depression and spike timing dependent plasticity. The device was able to be programed through a 1 mV pulse, requiring only 100 fJ of energy. The voltage-dependent conductive nature of the polymer was speculated to occur through two synergistic mechanisms, one associated with the conjugation along the backbone of the conjugated polymer and one mechanism associated with the pendant heterocyclic rings. 
    more » « less
  5. Conjugated electrochemical memristors are a promising alternative towards bioelectronic circuitry. A self-doped PEDOT is synthesized, fabricated as a three-terminal device, and studied for electrochromic, memristive, and neuromorphic capabilities. 
    more » « less
  6. null (Ed.)
    Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway motion of organic reactions. However, due to the large amount of information associated with trajectories, quantitative analysis of the dynamic origin of reaction selectivity is complex. For the electrocyclic ring opening of cyclopropyl radical, more than 4000 trajectories were run showing that allyl radicals are formed through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a random forest model enabled quantitative and qualitative assessment of transition-state trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two key vibrational modes where their directional combination provides prediction of IRC versus non-IRC motion. 
    more » « less
  7. null (Ed.)
  8. Abstract

    A non‐volatile conjugated polymer‐based electrochemical memristor (cPECM), derived from sodium 4‐[(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐2‐yl)methoxy]butane‐2‐sulfonate (S‐EDOT), is fabricated through roll‐to‐roll printing and exhibited neuromorphic properties. The 3‐terminal device employed a “read” channel where conductivity of the water‐soluble, self‐doped S‐PEDOT is equated to synaptic weight and was electrically decoupled from the programming electrode. For the model system, a +2500 mV programming pulse of 100 ms duration resulted in a 0.136 μS resolution in conductivity change, giving over 1000 distinct conductivity states for one cycle. The minimum programming power requirements of the cPECM was 0.31 pJ mm−2and with advanced printing techniques, a 0.1 fJ requirement for a 20 μm device is achievable. The mathematical operations of addition, subtraction, multiplication, and division are demonstrated with a single cPECM, as well as the logic gates AND, OR, NAND, and NOR. This demonstration of a printed cPECM is the first step toward the implementation of a mass produced electrochemical memristor that combines information storage and processing and may allow for the realization of printable artificial neural networks.

     
    more » « less
  9. Abstract

    Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da.

     
    more » « less
  10. Abstract

    A memristor is a two‐terminal electronic device whose observed conductance is dependent on the history of the voltage that has been applied across the device. In this effort, poly(11‐(9H‐carbazol‐9‐yl)undecyl methacrylate) (PUMA) is fabricated into a two‐terminal device with Al and ITO electrodes and exhibits a number of signature memristor characteristics such as an irreversible transition from an insulator to a conductor at a specific DC voltage and hysteresis in the AC response. A PUMA‐based device could transition through a multitude of conductance states with varying voltage, allowing the device to exhibit spike‐timing‐dependent‐plasticity, an essential feature in replicating the behavior of biological synapses.

     
    more » « less